Blog
Cryptogpt

CryptoGPT: Crypto Twitter Sentiment Analysis

CryptGPT Preview

Welcome to the CryptoGPT! In this tutorial, we'll dive into a fascinating project that combines Streamlit, ChatGPT, and LangChain to analyze the sentiment of tweets related to cryptocurrencies. By utilizing Streamlit, we'll create a user-friendly interface that allows us to interact with our sentiment analysis application effortlessly.

Join the AI BootCamp!

Ready to dive into the world of AI and Machine Learning? Join the AI BootCamp to transform your career with the latest skills and hands-on project experience. Learn about LLMs, ML best practices, and much more!

By constructing a well-crafted prompt and utilizing ChatGPT's capabilities, we'll be able to generate a sentiment score for each tweet. Each sentiment score will be between 0 (bearish) and 100 (bullish). Let's start building!

The project is hosted on Streamlit Cloud. Try it out: CryptoGPT (opens in a new tab)

Project Setup

We'll use Python 3.11.3 for this project, and the directory structure will be as follows:

.
├── .flake8
├── .gitignore
├── .python-version
├── .vscode
│   └── settings.json
├── main.py
├── requirements.txt
└── sentiment_analyzer.py

Libraries

Let's install all of the libraries we'll need for this project:

pip install -U pip
pip install black isort langchain openai pandas plotly tweety-ns

Config

We'll use black and isort for formatting and import sorting. Additionally, we'll configure VSCode for the project:

.vscode/settings.json
{
  "python.formatting.provider": "black",
  "[python]": {
    "editor.formatOnSave": true,
    "editor.codeActionsOnSave": {
      "source.organizeImports": true
    }
  },
  "isort.args": ["--profile", "black"]
}
.flake8
[flake8]
max-line-length = 120

Streamlit

Streamlit1 is an open-source Python library designed for building custom web applications with ease. It allows us to create interactive and visually appealing data-driven applications using Python. With Streamlit, we can quickly transform our data analysis code into shareable web applications, making it ideal for our sentiment analysis project. Let's leverage the power of Streamlit to create a seamless and user-friendly interface for analyzing the sentiment of cryptocurrency tweets.

Get Tweets

To fetch tweets for our analysis, we'll make use of the tweety2 library. This library interacts with Twitter's frontend API to retrieve the desired tweets:

main.py
from tweety.bot import Twitter
 
twitter_client = Twitter()

Now, let's fetch some tweets from Elon Musk's Twitter account:

tweets = twitter_client.get_tweets("elonmusk")
for tweet in tweets:
    print(tweet.text)
    print()
Spaces interview with @davidfaber starting now
 
Tesla shareholder meeting underway
 
As more satellites & ground stations are added, latency & jitter will
improve. Goal is <20ms latency.
 
Soros reminds me of Magneto
 
Tesla Powerwall does the seem for individual homes (if you have the backup
switch installed) https://t.co/mY2WHe1KE1

We can remove unnecessary elements like URLs, new lines, and multiple spaces from the tweets, as they are not relevant for our sentiment analysis and will save tokens for ChatGPT:

sentiment_analyzer.py
import re
 
def clean_tweet(text: str) -> str:
    text = re.sub(r"http\S+", "", text)
    text = re.sub(r"www.\S+", "", text)
    return re.sub(r"\s+", " ", text)

The first two lines use re.sub() to remove any URLs starting with "http://" or "www" from the text. The third line replaces consecutive whitespace characters (such as spaces, tabs, and new lines) with a single space.

We'll use a dataframe to organize and easily visualize the tweets:

sentiment_analyzer.py
from datetime import datetime
from typing import Dict, List
 
import pandas as pd
from tweety.types import Tweet
 
def create_dataframe_from_tweets(tweets: List[Tweet]) -> pd.DataFrame:
    rows = []
    for tweet in tweets:
        clean_text = clean_tweet(tweet.text)
        if len(clean_text) == 0:
            continue
        rows.append(
            {
                "id": tweet.id,
                "text": clean_text,
                "author": tweet.author.username,
                "date": str(tweet.date.date()),
                "created_at": tweet.date,
                "views": tweet.views,
            }
        )
 
    df = pd.DataFrame(
        rows,
        columns=["id", "text", "author", "date", "views", "created_at"]
    )
    df.set_index("id", inplace=True)
    if df.empty:
        return df
    today = datetime.now().date()
    df = df[
        df.created_at.dt.date > today - pd.to_timedelta("7day")
    ]
    return df.sort_values(by="created_at", ascending=False)

This create_dataframe_from_tweets function iterates over each tweet, cleans the text using the clean_tweet function, and adds relevant information such as tweet ID, text, author, date, views, and creation timestamp to a dictionary. These dictionaries are used to create a DataFrame with tweets from the past 7 days.

Let's try it out:

df = create_dataframe_from_tweets(tweets)
df.head()
idtextauthordateviewscreated_at
1658564606984441859Tesla shareholder meeting underwayelonmusk2023-05-1682440782023-05-16 20:06:31+00:00
1658525853934813201As more satellites & ground stations are added, latency & jitter will improve. Goal is <20ms latency.elonmusk2023-05-1689073662023-05-16 17:32:32+00:00
1658291808592629761Soros reminds me of Magnetoelonmusk2023-05-16399375062023-05-16 02:02:31+00:00
1658284090691338241Tesla Powerwall does the seem for individual homes (if you have the backup switch installed)elonmusk2023-05-16173708162023-05-16 01:31:51+00:00

Tweet Data UI

Our UI will have a straightforward design, with a split-screen layout consisting of two columns. The left column will be dedicated to loading the data:

main.py
col1, col2 = st.columns(2)

We require two pieces of information from the user - the OpenAI API key and the Twitter handles:

main.py
with col1:
    st.text_input(
        "OpenAI API Key",
        type="password",
        key="api_key",
        placeholder="sk-...4242",
        help="Get your API key: https://platform.openai.com/account/api-keys",
    )
 
    with st.form(key="twitter_handle_form", clear_on_submit=True):
        st.subheader("Add Twitter Accounts", anchor=False)
        st.text_input(
            "Twitter Handle", value="", key="twitter_handle", placeholder="@saylor"
        )
        submit = st.form_submit_button(label="Add Tweets", on_click=on_add_author)
 
    if st.session_state.twitter_handles:
        st.subheader("Twitter Handles", anchor=False)
        for handle, name in st.session_state.twitter_handles.items():
            handle = "@" + handle
            st.markdown(f"{name} ([{handle}](https://twitter.com/{handle}))")
 
    st.subheader("Tweets", anchor=False)
 
    st.dataframe(
        create_dataframe_from_tweets(st.session_state.tweets),
        use_container_width=True
    )

We have a password input field for the user to enter their OpenAI API key, and a form to add Twitter handles. The form has an input field where the user can enter a Twitter handle, and a button to add the handle and retrieve tweets. We also display tweet authors in a list. Finally, there is a section displaying the tweets in a dataframe format using the create_dataframe_from_tweets function (defined previously).

Let's take a look at how we add tweets:

main.py
def on_add_author():
    twitter_handle = st.session_state.twitter_handle
    if twitter_handle.startswith("@"):
        twitter_handle = twitter_handle[1:]
    if twitter_handle in st.session_state.twitter_handles:
        return
    all_tweets = twitter_client.get_tweets(twitter_handle)
    if len(all_tweets) == 0:
        return
    st.session_state.twitter_handles[twitter_handle] = all_tweets[0].author.name
    st.session_state.tweets.extend(all_tweets)
    st.session_state.author_sentiment[twitter_handle] = analyze_sentiment(
        twitter_handle, st.session_state.tweets
    )

The on_add_author function is triggered when the user clicks the "Add Tweets" button after entering a Twitter handle. It removes the "@" symbol from the handle if present, checks if the handle is already added, fetches all the tweets for that handle, and adds the data to the session state.

Finally, analyzes the sentiment of the tweets using the analyze_sentiment function and stores it in the session state.

Sentiment Analysis with ChatGPT

To analyze crypto sentiment using ChatGPT, we will provide it with the following prompt:

sentiment_analyzer.py
PROMPT_TEMPLATE = """
You're a cryptocurrency trader with 10+ years of experience. You always follow
the trend and follow and deeply understand crypto experts on Twitter. You
always consider the historical predictions for each expert on Twitter.
 
You're given tweets and their view count from @{twitter_handle} for specific dates:
 
{tweets}
 
Tell how bullish or bearish the tweets for each date are. Use numbers between 0
and 100, where 0 is extremely bearish and 100 is extremely bullish.
 
Use a JSON using the format:
 
date: sentiment
 
Each record of the JSON should give the aggregate sentiment for that date.
Return just the JSON. Do not explain.
"""

The prompt sets the context of ChatGPT as an experienced cryptocurrency trader who relies on Twitter experts and considers historical predictions. It provides a variable {twitter_handle} for the Twitter handle and {tweets} for the tweet data with view counts.

The task is to analyze the sentiment of the tweets for each date and provide a JSON output containing the aggregate sentiment for each date. The sentiment values should range from 0 (extremely bearish) to 100 (extremely bullish). We require that the model doesn't provide any other output.

Let's use the prompt:

sentiment_analyzer.py
def analyze_sentiment(twitter_handle: str, tweets: List[Tweet]) -> Dict[str, int]:
    chat_gpt = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
    prompt = PromptTemplate(
        input_variables=["twitter_handle", "tweets"], template=PROMPT_TEMPLATE
    )
 
    sentiment_chain = LLMChain(llm=chat_gpt, prompt=prompt)
    response = sentiment_chain(
        {
            "twitter_handle": twitter_handle,
            "tweets": create_tweet_list_for_prompt(tweets, twitter_handle),
        }
    )
    return json.loads(response["text"])

The function analyze_sentiment takes a Twitter handle and a list of tweets as inputs. It creates an instance of the ChatOpenAI class, specifying the model as ChatGPT. It also creates a prompt and provides the variables twitter_handle and tweets.

We send a request to ChatGPT (via the LLMChain from LangChain) by passing the Twitter handle and the processed tweet list as input variables. Finally, the function returns the parsed JSON object representing the sentiment analysis of the tweets, with each date mapped to an integer sentiment value.

The final part is this helper function:

sentiment_analyzer.py
def create_tweet_list_for_prompt(tweets: List[Tweet], twitter_handle: str) -> str:
    df = create_dataframe_from_tweets(tweets)
    user_tweets = df[df.author == twitter_handle]
    if user_tweets.empty:
        return ""
    if len(user_tweets) > 100:
        user_tweets = user_tweets.sample(n=100)
 
    text = ""
 
    for tweets_date, tweets in user_tweets.groupby("date"):
        text += f"{tweets_date}:"
        for tweet in tweets.itertuples():
            text += f"\n{tweet.views} - {tweet.text}"
    return text

The function creates a dataframe from the tweets using the create_dataframe_from_tweets function. It then keeps only the tweets authored by the given Twitter handle and limits them to 100.

The function then appends tweet texts and view counts grouped by date to a text variable.

Visualize Sentiment

We'll utilize Plotly to visualize the sentiment. We can generate a line chart to visualize the sentiment trends. Additionally, we'll display a dataframe that contains the sentiment data:

main.py
with col2:
    sentiment_df = create_sentiment_dataframe(st.session_state.author_sentiment)
    if not sentiment_df.empty:
        fig = px.line(
            sentiment_df,
            x=sentiment_df.index,
            y=sentiment_df.columns,
            labels={"date": "Date", "value": "Sentiment"},
        )
        fig.update_layout(yaxis_range=[0, 100])
        st.plotly_chart(fig, theme="streamlit", use_container_width=True)
 
        st.dataframe(sentiment_df, use_container_width=True)

Note that we specify the y axis range as [0, 100] to ensure that the sentiment values are scaled properly.

Let's create the data frame for the sentiment chart:

main.py
def create_sentiment_dataframe(sentiment_data: Dict[str, int]) -> pd.DataFrame:
    date_list = pd.date_range(
        datetime.now().date() - timedelta(days=6), periods=7, freq="D"
    )
    dates = [str(date) for date in date_list.date]
    chart_data = {"date": dates}
 
    for author, sentiment_data in sentiment_data.items():
        author_sentiment = []
        for date in dates:
            if date in sentiment_data:
                author_sentiment.append(sentiment_data[date])
            else:
                author_sentiment.append(None)
        chart_data[author] = author_sentiment
 
    sentiment_df = pd.DataFrame(chart_data)
    sentiment_df.set_index("date", inplace=True)
 
    if not sentiment_df.empty:
        sentiment_df["Overall"] = sentiment_df.mean(skipna=True, axis=1)
    return sentiment_df

Our function generates a list of dates for the past 7 days and initializes the DataFrame with the dates as the index. Then, it populates it with sentiment values for each author, filling in missing values with None. Finally, it calculates the overall sentiment by taking the mean of the sentiment values for each date (row) as a new column.

Conclusion

In this tutorial, we covered the process of sentiment analysis on cryptocurrency tweets using LangChain and ChatGPT. We learned how to download and preprocess tweets, visualize sentiment data using Plotly, and create a Streamlit application to interact with the sentiment analysis pipeline.

The integration of Streamlit allows us to create an interactive and intuitive interface for users to input Twitter handles, view sentiment analysis results, and visualize the sentiment trends over time.

Complete Code

sentiment_analyzer.py
import json
import re
from datetime import datetime
from typing import Dict, List
 
import pandas as pd
import streamlit as st
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from tweety.types import Tweet
 
PROMPT_TEMPLATE = """
You're a cryptocurrency trader with 10+ years of experience. You always follow the trend
and follow and deeply understand crypto experts on Twitter. You always consider the historical predictions for each expert on Twitter.
 
You're given tweets and their view count from @{twitter_handle} for specific dates:
 
{tweets}
 
Tell how bullish or bearish the tweets for each date are. Use numbers between 0 and 100, where 0 is extremely bearish and 100 is extremely bullish.
Use a JSON using the format:
 
date: sentiment
 
Each record of the JSON should give the aggregate sentiment for that date. Return just the JSON. Do not explain.
"""
 
 
def clean_tweet(text: str) -> str:
    text = re.sub(r"http\S+", "", text)
    text = re.sub(r"www.\S+", "", text)
    return re.sub(r"\s+", " ", text)
 
 
def create_dataframe_from_tweets(tweets: List[Tweet]) -> pd.DataFrame:
    rows = []
    for tweet in tweets:
        clean_text = clean_tweet(tweet.text)
        if len(clean_text) == 0:
            continue
        rows.append(
            {
                "id": tweet.id,
                "text": clean_text,
                "author": tweet.author.username,
                "date": str(tweet.date.date()),
                "created_at": tweet.date,
                "views": tweet.views,
            }
        )
 
    df = pd.DataFrame(
        rows, columns=["id", "text", "author", "date", "views", "created_at"]
    )
    df.set_index("id", inplace=True)
    if df.empty:
        return df
    df = df[df.created_at.dt.date > datetime.now().date() - pd.to_timedelta("7day")]
    return df.sort_values(by="created_at", ascending=False)
 
 
def create_tweet_list_for_prompt(tweets: List[Tweet], twitter_handle: str) -> str:
    df = create_dataframe_from_tweets(tweets)
    user_tweets = df[df.author == twitter_handle]
    if user_tweets.empty:
        return ""
    if len(user_tweets) > 100:
        user_tweets = user_tweets.sample(n=100)
 
    text = ""
 
    for tweets_date, tweets in user_tweets.groupby("date"):
        text += f"{tweets_date}:"
        for tweet in tweets.itertuples():
            text += f"\n{tweet.views} - {tweet.text}"
    return text
 
 
def analyze_sentiment(twitter_handle: str, tweets: List[Tweet]) -> Dict[str, int]:
    chat_gpt = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
    prompt = PromptTemplate(
        input_variables=["twitter_handle", "tweets"], template=PROMPT_TEMPLATE
    )
 
    sentiment_chain = LLMChain(llm=chat_gpt, prompt=prompt)
    response = sentiment_chain(
        {
            "twitter_handle": twitter_handle,
            "tweets": create_tweet_list_for_prompt(tweets, twitter_handle),
        }
    )
    return json.loads(response["text"])
 
main.py
import os
from datetime import datetime, timedelta
from typing import Dict
 
import pandas as pd
import plotly.express as px
import streamlit as st
from tweety.bot import Twitter
 
from sentiment_analyzer import analyze_sentiment, create_dataframe_from_tweets
 
twitter_client = Twitter()
 
 
def on_add_author():
    twitter_handle = st.session_state.twitter_handle
    if twitter_handle.startswith("@"):
        twitter_handle = twitter_handle[1:]
    if twitter_handle in st.session_state.twitter_handles:
        return
    all_tweets = twitter_client.get_tweets(twitter_handle)
    if len(all_tweets) == 0:
        return
    st.session_state.twitter_handles[twitter_handle] = all_tweets[0].author.name
    st.session_state.tweets.extend(all_tweets)
    st.session_state.author_sentiment[twitter_handle] = analyze_sentiment(
        twitter_handle, st.session_state.tweets
    )
 
 
def create_sentiment_dataframe(sentiment_data: Dict[str, int]) -> pd.DataFrame:
    date_list = pd.date_range(
        datetime.now().date() - timedelta(days=6), periods=7, freq="D"
    )
    dates = [str(date) for date in date_list.date]
    chart_data = {"date": dates}
 
    for author, sentiment_data in sentiment_data.items():
        author_sentiment = []
        for date in dates:
            if date in sentiment_data:
                author_sentiment.append(sentiment_data[date])
            else:
                author_sentiment.append(None)
        chart_data[author] = author_sentiment
 
    sentiment_df = pd.DataFrame(chart_data)
    sentiment_df.set_index("date", inplace=True)
 
    if not sentiment_df.empty:
        sentiment_df["Overall"] = sentiment_df.mean(skipna=True, axis=1)
    return sentiment_df
 
 
st.set_page_config(
    layout="wide",
    page_title="CryptoGPT: Crypto Twitter Sentiment Analysis",
    page_icon="https://cdn.jsdelivr.net/gh/twitter/twemoji@14.0.2/assets/72x72/1f4c8.png",
)
 
 
st.markdown(
    "<h1 style='text-align: center'>CryptoGPT: Crypto Twitter Sentiment Analysis</h1>",
    unsafe_allow_html=True,
)
 
 
if not "tweets" in st.session_state:
    st.session_state.tweets = []
    st.session_state.twitter_handles = {}
    st.session_state.api_key = ""
    st.session_state.author_sentiment = {}
 
os.environ["OPENAI_API_KEY"] = st.session_state.api_key
 
col1, col2 = st.columns(2)
 
with col1:
    st.text_input(
        "OpenAI API Key",
        type="password",
        key="api_key",
        placeholder="sk-...4242",
        help="Get your API key: https://platform.openai.com/account/api-keys",
    )
 
    with st.form(key="twitter_handle_form", clear_on_submit=True):
        st.subheader("Add Twitter Accounts", anchor=False)
        st.text_input(
            "Twitter Handle", value="", key="twitter_handle", placeholder="@saylor"
        )
        submit = st.form_submit_button(label="Add Tweets", on_click=on_add_author)
 
    if st.session_state.twitter_handles:
        st.subheader("Twitter Handles", anchor=False)
        for handle, name in st.session_state.twitter_handles.items():
            handle = "@" + handle
            st.markdown(f"{name} ([{handle}](https://twitter.com/{handle}))")
 
    st.subheader("Tweets", anchor=False)
 
    st.dataframe(
        create_dataframe_from_tweets(st.session_state.tweets), use_container_width=True
    )
 
with col2:
    sentiment_df = create_sentiment_dataframe(st.session_state.author_sentiment)
    if not sentiment_df.empty:
        fig = px.line(
            sentiment_df,
            x=sentiment_df.index,
            y=sentiment_df.columns,
            labels={"date": "Date", "value": "Sentiment"},
        )
        fig.update_layout(yaxis_range=[0, 100])
        st.plotly_chart(fig, theme="streamlit", use_container_width=True)
 
        st.dataframe(sentiment_df, use_container_width=True)
 
3,000+ people already joined

Join the The State of AI Newsletter

Every week, receive a curated collection of cutting-edge AI developments, practical tutorials, and analysis, empowering you to stay ahead in the rapidly evolving field of AI.

I won't send you any spam, ever!

References

Footnotes

  1. Streamlit (opens in a new tab)

  2. tweety library (opens in a new tab)